
 MCT-Series Application Note
 CHANGING I2C SLAVE ADDRESS

 Application Note

In certain technical applications, the necessity to change the I2C address of pressure sensors arises

from practical considerations and system design requirements. Pressure sensors, crucial components

in various industrial and electronic systems, often communicate with microcontrollers or other

devices using the I2C protocol. In scenarios where multiple sensors coexist within the same network,

having unique I2C addresses becomes imperative to prevent address conflicts and ensure seamless

communication. Address customization facilitates the integration of multiple sensors into a single

system, allowing for efficient data acquisition and processing. Moreover, changing the I2C address

provides the flexibility to configure sensor networks as per the specific needs of a project, optimizing

resource utilization and enabling more sophisticated and scalable sensor deployments. Therefore, the

ability to modify I2C addresses on pressure sensors is a valuable feature that enhances the

adaptability and versatility of sensor networks in diverse applications; this application note address

this need.

Table 1: Changing I2C Slave Address

 MCT-Series Application Note
 CHANGING I2C SLAVE ADDRESS

 Application Note

C Code Example

The following code changes the I2C slave address of MS45x5DO sensor.

#define OldI2Caddress 0x28

#define NewI2Caddress 0x36

unsigned char EEPROMdata[4];

unsigned int tempEEPROMdata;

bool SetNewI2Caddress(unsigned char OldAddress,unsigned char NewAddress);

bool EnterCommandMode(unsigned char I2Caddress);

bool ReadEEPROM (unsigned I2Caddress,unsigned char EEPROMaddress);

bool FetchEEPROM (unsigned char Address,unsigned char Quantity,unsigned char *Data);

bool WriteDataToSensor (unsigned char Address, unsigned char Quantity, unsigned char *Data);

void START(void);

void STOP(void);

bool DetectACK(void);

void SendACK(void);

void main (void)

{

SetNewI2Caddress(OldI2Caddress, NewI2Caddress);

for(;;)

}

bool SetNewI2Caddress(unsigned char OldAddress,unsigned char NewAddress)

{

bool result=false;

PowerUpSensor (); //Power up MS45x5DO sensor

Delay (3); //Delay 3ms.

if (EnterCommandMode(OldI2Caddress)==true) //Put sensor into command mode.

{

if (ReadEEPROM(OldI2Caddress,0x02)==true) //Read EEPROM word 02

{

if (FetchEEPROM(OldI2Caddress,3, EEPROMdata)==true) //Fetch EEPROM word 02

{

if (EEPROMdata [0]==0x5A)

{

tempEEPROMdata= (((EEPROMdata [1] << 8) + EEPROMdata [2]) & 0xE007) + (NewI2Caddress << 3) +

0xC00;

EEPROMdata [1] = (unsigned char) ((tmpEEPROMdata & 0xff00)>>8);

EEPROMdata [2] = (unsigned char) (tmpEEPROMdata & 0x00ff);

EEPROMdata [0] =0x42;

if (WriteDataToSensor(OldI2Caddress,3, EEPROMdata)==true) //Write new version of //Word 02 to

sensor //EEPROM

 MCT-Series Application Note
 CHANGING I2C SLAVE ADDRESS

 Application Note

{

EEPROMdata [0]=0x80;

EEPROMdata [1]=0x00;

EEPROMdata [2]=0x00;

if (WriteDataToSensor (OldI2Caddress,3, EEPROMdata)==true) //Exit command mode & //start

normal operating

//mode.

{

result=true;

}

}

}

}

}

}

return result;

}

bool EnterCommandMode(unsigned char I2Caddress)

{

EEPROMdata [0] = 0xA0;

EEPROMdata [1] = 0x00;

EEPROMdata [2] = 0x00;

return (WriteDataToSensor (I2Caddress,3, EEPROMdata));

}

bool ReadEEPROM (unsigned I2Caddress,unsigned char EEPROMaddress)

{

EEPROMdata [0] = EEPROMaddress;

EEPROMdata [1] = 0x00;

EEPROMdata [2] = 0x00;

return (WriteDataToSensor (I2Caddress,3, EEPROMdata));

}

bool FetchEEPROM (unsigned char Address,unsigned char Quantity,unsigned char *Data)

{

unsigned char index;

START();

Address=(Address<<1)+0x01;

SendOneByteData(Address); //send address..

if (DetectACK()==false) //check ACK.

{

STOP();

return false;

 MCT-Series Application Note
 CHANGING I2C SLAVE ADDRESS

 Application Note

}

//

For (index=0; index <Quantity;Index++)

{

Data[index]=ReadOneByteData();

if (index<(Quantity-1))

{

SendACK();

}

}

STOP();

return true;

}

bool WriteDataToSensor (unsigned char Address, unsigned char Quantity, unsigned char *Data)

{

unsigned char index;

START();

.

SendOneByteData(Address<<1); //send address and Write Command

if (DetectACK()==false) //check ACK.

{

STOP();

return false;

}

for(index=0;index<Quantity;index++)

{

SendOneByteData (Data[index]);

if (DetectACK()==false)

{

STOP();

return false;

}

}

STOP();

return true;

}

